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Abstract

This paper provides an introduction to JIGSAW, an
algorithm for self-organising spatial mapping, capable of
mapping unknown sensory systems to unknown motor
systems. For computer scientists, scalability comparisons
with Self Organising Kohonen Maps and Multi-
Dimensional Scaling are provided. For Neuro-scientists,
a model of the organisational processes resulting in
retinotopicity and sensory and motor homuncularity is
given. For Roboticists, a robust method of continuous
self-calibration is described, and for Psychologists, a
large-scale multi-variate tool of analysis is offered.

Introduction

Space is an all-pervasive abstraction, fundamental to
the visual, haptic and auditory senses, as well as motor
control. Spatial mapping underlies navigation,
identification of the extension of, and boundaries
between, objects and regions. Indeed, space is
implicitly so well understood that it is used as a
metaphor for aiding understanding of many non-spatial
abstractions, such as social and semantic relationships.
For all these reasons, spatial awareness is often taken
for granted, and just assumed to be present in intelligent
systems. Only once spatial awareness is absent or
dysfunctional, are we faced with the problem of how to
create and maintain it.

The problem we pose in this paper is how to derive
spatial mappings a priori — with no prior concepts of
distance, direction, locality, and their derivatives such
as up, down, further, between, around, etc.

The significance of this problem is that once it is
solved three possibilities open up. First, a disembodied
and universal algorithm, placed between unknown
sensory systems and unknown motor systems, can
organically merge them and assume purposive control
of the motor systems. Second, we may obtain an
understanding of how biological systems develop
spatial awareness, through processes operating at an
inter-neural level. Third, as a side effect we obtain a
new analytical tool, capable of organising data sources
in a useful way.

Background

Within the cognitive sciences, there have been two
important approaches to the generation of spatial
representations. We briefly describe each.

Kohonen’s Self-Organising Maps

SOMs are commonly used for dimensional reduction
but can also be used for the construction of spatial
representations (Ritter, 1990). To do this SOMs take as
input a set of time-varying signals and produce as
output a bound, sampled, convergent and topographic
map of the signals. Each of the cited characteristics of
the map is problematic. Being bound, it is the shape of
the output format that determines the shape of the data
in the representation, rather than the other way around.
Being sampled, the output format determines the
resolution of the mapping, particularly problematic for
space-variance in the density of the data. Being
convergent, the mapping is unable to cope with large
reconfigurations of the input data during its learning
phase. Being topographic, potentially valuable metric
information is discarded.

Multidimensional Scaling

MDS takes as input a set of dissimilarity measures
between nodes in a graph, and produces as output
multidimensional coordinates for each node (Young &
Hamer, 1987). The coordinates are those that best
respect the input dissimilaritities. MDS is free of the
problems we associate above with SOMs. However, it
shares with SOMs a difficulty in dealing with very large
sets of inputs.

Both MDS and SOMs are order O (n°) in
computational complexity, which limits their
effectiveness to problems involving only a few
thousand inputs. Sensory systems, unfortunately, are
characterized by their very large number of inputs, and
are therefore difficult to model using either MDS or
SOM:s. This is a problem.



Research in Spatial Redundancy

The key to the problem of complexity is that spatial
data is largely redundant, and a sample of inputs can be
used to organize the whole set. Before addressing our
methods for dealing with this, it is necessary to note
that an awareness of spatial redundancy has been
documented in a variety of fields.

Spatial redundancy in television signals was
documented in 1952 as offering the potential for data
compression (Kretzmer, 1952). Later, spatial
redundancy was shown to be the characteristic that
allowed lateral inhibition in the vision systems of flies
to work (Srinivasan, McLaughlin and Dubs, 1982).
Anisotropic spatial redundancy has been used to explain
the horizontal-vertical illusion (Baddeley, 1997). In the
estimation of spatial distributions of, among other
things, ore deposits, fish stocks, and meteorological
effects, methods have been developed for measuring
samples at known points and spatially interpolating and
extrapolating these measurements to derive maps
(Cressie, 1993).

However, two further conceptual steps must be taken
before we are able to frame methods for creating spatial
representations from scratch. First, though previous
research recognizes that there is often an inverse
correlation between spatial distance and similarity of
measurement, in general, known distances have been
used to estimate measurements. The converse, using
differences in measurements to estimate distances, has
not been done. Second, differences in measurements
were assumed to be of static ‘scenes’ in which the goal
was to map the data rather than the system or apparatus
that delivered it. In the second conceptual step, it is
necessary to use differences in measurements of time-
varying signals to produce a map that describes only the
relative disposition of the signal sources, not the state of
the data at any particular moment. It is simple, once
signal sources have been mapped, to use their locations
to map any instantaneous data that they carry.

The second step, in biological terms, is perhaps
analogous to the development of sensory homuncularity
in the brain, whereby maps of the surface of the skin
develop, and in turn allow us to map and localize
effects that are felt through the skin. The same applies
to retinotopicity, which allows us to perceive visual
maps of our surroundings as read on the surface of the
retinae. It is not necessary that such spatial structures
form in the brain (Koenderink, 1990), but it appears
physically economical to organize sensory systems this
way, as we shall show.

Methods

The process of deriving real-time spatial mappings can
be broken down into three parallel sub-processes. First,
for a given pair of signals, it is necessary to maintain
some measure of difference, or similarity, depending on

how we wish to express it, and based on this, an
estimate of the distance between the sources of the
signals. Second, we must iteratively adjust our spatial
representation such that it reflects current distance
estimates. Third, in order to overcome the problems of
quadratic computational complexity, the overall system
must dynamically optimize, i.e. intelligently restrict, its
selection of data for processing.

Process 1: The ab Relationship

Following our previous work, we shall refer to the
actual distance between two signal sources as a, and the
behavioral difference of the signals as b (Peters and
Drake, 2000). Our method assumes that as a increases,
so does b, reflecting the common sense notion that the
further apart we take our measurements, the greater the
likely difference between them. This monotonic
relationship is termed the ab relationship. We can
express the ab relationship as

b=f(a) (M

where f'is an invertible function.

Our experiments and those of others have shown that
while there is variability in the ab relationship, it is
approximated closely by an exponential curve
(Kretzmer, 1952; Peters and Drake, 2000; Srinivasan,
McLaughlin and Dubs, 1982). Hence

b=p(1-e™) )

where A and u are scaling constants.

In practice, each scene, image, movie, or data set has
a characteristic ab relationship that is determined by a
mix of scales; in other words, A is usually a
distribution of values rather than a single value. The A
distribution is capable of describing signal noise and
many other effects, but for simplicity we can retain a
single scaling value of A and add a noise constant, v,
to the equation:

b=p—(u-v)e™ 3)
Which, solved for a leads to
a ={l)1n[“ —b ] @)
A \u-v

This ab relationship is illustrated in Figure 1.

a

Figure 1: A practical form of the ab relationship.




For a given measure of the behavioral difference of
two signals, we can estimate the actual distance
between their sources. For b, we chose Pearson’s
coefficient of correlation on an exponentially decaying
moving average.

Process 2: Multidimensional Scaling

To make a map, of any dimensionality, it is efficient to
imply a space via coordinates assigned to each object in
the space. The objects, in this case, are point-like
representations of each signal source, and are termed
locators. Each pair of locators selected for data
gathering and processing is called a dyad. The
geometrical distance of two locators in the
representation is termed g. Not stored explicitly, this
measure is calculated from locator coordinates.

The a values of dyads are appropriate input to an
MDS process. The role of MDS is to adjust g values
until they agree with a values. We use a gradient
descent form of MDS in a Euclidean model of space. In
simple terms, MDS moves each locator in a dyad (i, j)
towards the other by a vector, h;;, in proportion to the
distance between them, and scaled by 1 —a;; / g;;. The
scaling is negative when the locators are too close
together, and positive when they are too far apart. Thus

a.
h,; =—k(xi —xj)[ —;j] 5)
gi’j

where k controls the descent rate.

The MDS process is intended to be continuous, so
more recent b values have greater impact on the spatial
map than older b values. This allows the map a degree
of adaptability, so that if the configuration of signal
sources changes, the layout of locators changes too.
There is a trade-off between stability and flexibility, as
the mapping can be made highly reactive and volatile,
or very stable and unresponsive. In practice, we set the
system’s adaptability so that changes in the
configuration of signals sources are reflected in the
disposition of locators after a few minutes.

Process 3: Dynamic Data Selection

JIGSAW’s chief advantage over both MDS and SOMs
is that it is of linear computation complexity: order
O(n). Rather than attempting to process all inter-signal
statistics, only a small subset are considered. Initially,
dyads are selected at random from the set of all possible
pairs. However, from Figure 1, it is apparent that
smaller » values are potentially more reliable as
predictors of a values; as the ab curve approaches the
asymptote, u, small discrepancies in b produce larger
errors in a. Consequently, spatial representations
composed largely from low b values suffer less from
uncertainly and ambiguity. It is obvious that if a subset
of pairs is to be selected for processing, it is
advantageous if the selected dyads produce a

predominance of low b values. Note that this is not the
only basis for preferring one pair over another, but it
has immediate practical value.

If a dyad produces a high b value, in absolute terms
or relative to other dyads involving a specific locator, a
replacement dyad can be sought. With no knowledge of
the actual distance between signal sources, it is
impossible to determine, in advance, which dyads will
produce low b values. However, as MDS constantly
improves the fidelity of the representation, each g value
approaches its corresponding a value. Thus, g provides
an ever more accurate indication of @, and a low g value
can be used as a criterion for selection of a new dyad.

Process Summary

It is implicit in the description of each process that all
three can operate stochastically and independently.
Consequently, each dyad can operate in parallel, fully
isolated from information in any other dyad.

Experiments

For signals, these experiments used time-varying pixel
values in image sequences. The advantage of pixels is
twofold. First, they are numerous, allowing realistic
tests with over 65,000 simultaneous signals to be
conducted. Second, pixels have a known spatial
arrangement that makes an effective reference against
which to compare the results.

JIGSAW was fed constantly changing values for
65,000 pixels, but was not given information about the
location of any pixel in the input sequence. The task
given to JIGSAW is not to reconstruct any particular
image, but to recover the relative spatial relationship of
the pixels. As already pointed out, once this spatial
mapping has been derived, any image or movie fed into
it, as a set of values, will be reproduced correctly.

Figure 2: Test image.



ire 3: JIGSAW’s iiilspaial app.

While there are several measures that indicate how
closely a spatial map matches an original, they are not
meaningful as indicators of how useful such a mapping
might be to a robot or an organism. We have therefore
chosen to illustrate the results of JIGSAW graphically,
by using the test image in Figure 2 as a consistent set of
pixel values. It has the same number of pixels as the
input data that was fed into JIGSAW. To illustrate the
fidelity of JIGSAW’s mappings, each pixel is mapped
to a single locator. The image will reappear perfectly
only when JIGSAW has fully recovered a high fidelity
mapping of the pixel’s correct positions.

In each experiment, the initial spatial mapping, before
any information has been received from signal sources,
is completely disorganized. When the pixel values of
the test image are fed to each locator, the image is
unrecognizable in the mapping (see Figure 3).

The first experiment (see Figure 4) was based on
simple input images generated on the fly. In Figure 4a,
JIGSAW’s initially random placement of locators has
begun to assume some degree of spatial structure. The
structure progressively improves to near-perfect (Figure
4c). NB: the mappings in Figures 4b and 4c have been
manually rotated to have the familiar orientation.

The appearance of black gaps in the mapping in
Figure 4c is a quantizing effect due to the difficulty of
representing a stochastic arrangement of locators in a
perfect orthogonal grid. A magnified section of the
mapping reveals that the fidelity of the results is much
higher than might be imagined (see Figure 5).

The second experiment (see Figure 6) uses a 25-
frame-per-second movie of carelessly filmed outdoor
scenes.

a: at 1,000 frames of video

b: at 3,000 frames of video

c: t 22,000 frames of deo
Figure 4: Experiment 1 spatial mapping.




Figure 5: Magnified section of spatial mapping.

In this experiment, the gross spatial mapping is
already evident after 5 minutes of video (see Figure 6a),
and the subsequent refinement of detail illustrates
JIGSAW continuous dynamic data selection — low b
values giving low a values, producing visibly more
accurate estimates of actual representations of the
distances between signal sources. The slight irregularity
of the overall mapping may be explained by statistically
non-stationary anisotropy in the video data. A less
reactive setting for JIGSAW might minimize such
effects but at the cost of speed of organization and
adaptability to change. In this experiment the
orientation of the mapping has been left unchanged.

Discussion

The experiments documented in this paper have been
chosen to illustrate the fidelity and speed of spatial
organization achieved by JIGSAW with a large set of
signals.

JIGSAW is a method for generating spatial
mappings. Its key contribution to any intelligent system
is that it takes essentially non-spatial input and
autonomously generates the prerequisites for spatial
awareness. JIGSAW is domain-independent and
therefore has application in several areas.

In robotics, JIGSAW has two main functions. First, it
will fuse images from multiple cameras, adjusting the
calibration during run-time if necessary. It can spatially
arrange the input of one camera with respect to another
camera, even when the two fields of view do not
overlap. Second, by a simple adaptation, JIGSAW can
be made to calibrate motor maps to such composite
spatial representations, by treating each combination of
pan and tilt position as a locator. It will perform the
sensory and motor calibration simultaneously, starting
from scratch. In order for motor commands to be
represented as locators, they need to be given a virtual

a: at 7,500 frames of video (5 minutes)

b: at 15,000 frames of video (10 minutes)

c: at 22,500 frames of video (15 minutes)
Figure 6: Experiment 2 spatial mapping.



signal. This signal is the value found at the fovea (a
privileged point which may be selected arbitrarily) after
the command has been executed. When compared with
signal values recorded just before the motor command
was executed, this provides enough information to
iteratively position the motor command at the point in
the spatial representation that will be foveated after the
next execution of that command.

In psychological analysis, MDS has had a major role
in producing simple spatial representations showing the
proximity of phenomenal experiences. The fact that the
computational complexity of MDS remains quadratic at
best means that JIGSAW has a potential role in
analyzing data sets that are simply too large for
standard MDS algorithms. It can be used to render
spatial representations of multi-variate data to any
dimensionality — JIGSAW has successfully organised
data from over a quarter of a million signals.

JIGSAW offers an interesting alternative model of
how neurons connect, one that clearly predicts the
homuncularity and other spatial mappings of the brain.
The key characteristic of the JIGSAW model is that the
relative position of locators is used to represent the
similarity of signals being received. Relative to the
Hebbian paradigm, the proximity of two locators in a
JIGSAW mapping is an indication of how closely two
neurons fire together. While in the brain neural nuclei
may not physically migrate towards each other, their
processes often do, and in this way the neurons can be
thought of as /logically migrating towards each other.
Being enclosed in a small space, the brain is
constrained by certain physical limitations to the extent
of connectivity between neurons. These limitations are
somewhat ameliorated if it is possible to arrange
neurons such that those that are most highly
interconnected are physically close together (Mitchison,
1991). In this way, less space is given over to
connecting processes, or white matter.

While some aspects of JIGSAW are not biologically
plausible (the ability for two locators to occupy the
same position, or the ability for one locator to be at a
great distance from all others), its information
processing certainly is. All processing is local. Each
locator is connected to a small number of others (20 to
50). Any of its pairings can be broken if the two signals
behave quite differently, and might then be replaced
with a new connection, biased towards other locators in
the immediate vicinity.

In summary, it should be emphasized that with
JIGSAW there now exists a method for forming spatial
representations that are independent of any apparatus-
imposed spatial organization. The implication of this is
that long-standing problems such as data fusion, shape
recognition in space-variant systems, and symbol-
grounding, can be approached in a new way.

In the case of data fusion, a common goal is to
achieve a universal spatial mapping based on multiple
local given spatial mappings (such as pixel position
within a single camera). The key problem is that
generally these local mappings are partially
incompatible. JIGSAW reformulates the problem by
discarding any assumed spatial mapping and deriving
its own from signal correlation.

Similarly, space-variant sub-sampling distorts the
shape of visible objects, particularly while they move
through the field of view. This complicates the work of
algorithms that depends on shape recognition. When
JIGSAW preprocesses space-variant data the space-
variance is removed and shape is rendered consistently.

JIGSAW deconstructs the sensorium of an agent, and
rebuilds spatial mappings based on the most
fundamental of sensory phenomena. All it requires to
do this is many small independent processors with the
simplicity of a single neuron — limited memory in the
form of habituation, only a single level of activation,
and the ability to transform correlation with the activity
of its neighbors into a tangible relationship, spatial
proximity. The correlative structure of the outside
world therefore dictates the internal structure of the
sensory system. This enables whatever derivate
symbols or meta-representations the system reifies to be
grounded in the world.
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